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a b s t r a c t

In this paper, we propose a multi-cycled sequential memetic computing structure for con-

strained optimisation. The structure is composed of multiple evolutionary cycles. At each

cycle, an evolutionary algorithm is considered as an operator, and connects with a local op-

timiser. This structure enables the learning of useful knowledge from previous cycles and

the transfer of the knowledge to facilitate search in latter cycles. Specifically, we propose to

apply an estimation of distribution algorithm (EDA) to explore the search space until con-

vergence at each cycle. A local optimiser, called DONLP2, is then applied to improve the

best solution found by the EDA. New cycle starts after the local improvement if the com-

putation budget has not been exceeded. In the developed EDA, an adaptive fully-factorized

multivariate probability model is proposed. A learning mechanism, implemented as the

guided mutation operator, is adopted to learn useful knowledge from previous cycles.

The developed algorithm was experimentally studied on the benchmark problems in

the CEC 2006 and 2010 competition. Experimental studies have shown that the developed

probability model exhibits excellent exploration capability and the learning mechanism

can significantly improve the search efficiency under certain conditions. The comparison

against some well-known algorithms showed the superiority of the developed algorithm

in terms of the consumed fitness evaluations and the solution quality.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The goal of this paper is to develop a memetic algorithm for the constrained optimization problem which is also referred

to as nonlinear programming (NLP) [3]. The NLP can be stated as follows:

min f (x), x ∈ F ∈ R
n
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where f(x) is the objective function, and F is the set of feasible solutions that satisfies:{
gi(x) ≤ 0, i = 1, . . . , q;
hj(x) = 0, j = q + 1, . . . , m.

Often, a solution x is regarded as feasible, if{
gi(x) ≤ 0 ∀i = 1, . . . , q

|hj(x)| − ε ≤ 0 ∀ j = q + 1, . . . , m.

where ε is small positive real number. The NLP can then be restated as (cf. (1)):

min f (x), x ∈ F = {x : ĝi(x) ≤ 0, 1 ≤ i ≤ m} (1)

where ĝi = gi, 1 ≤ i ≤ q, ĝ j = |h j| − ε, j = q + 1, . . . , m. Many machine learning problems, such as image processing [68], or-

dinal regression [17,18], robust clustering [55,57], correlation analysis [58], and others, can be formulated as NLP.

One of the main concerns in developing evolutionary algorithms (EAs) for the NLP is on how to select promising parent

individuals for offspring reproduction. An effective selection method, or essentially individual ranking, should balance the

feasibility and the objective values of the individuals. Note that an individual with small objective function value might not

even be feasible. Most of the selection strategies are based on the superiority of feasible solutions over infeasible solutions

[49]. However, Jiao et al. [26] found that global optimal solutions are more likely to be found on the boundary between the

non-dominated and feasible sets.

Various constraint-handling techniques have been developed for effective ranking. The stochastic ranking (SR) method

[51] ranks the individuals by balancing the objective function value and the penalty on constraint violations stochastically.

An addition of ranking method developed in [21] ranks various numerical properties of the population such as the values

of the objective functions, the constraint violations, and the number of constraint violations, respectively; and aggregates

these rankings together as the final ranking criterion. Some authors, e.g. [1,11], proposed to rank individuals based on Pareto

dominance relation in a multi-objective perspective. In [2], the authors proposed to adapt the penalty parameters. In [47],

the authors proposed to first identify which constraints are effective and then use them to contribute to the fitness evalua-

tion. In [59], the ε-constraint handling method was proposed in which an ε parameter is applied to control the relaxation

of the constrains. A rough penalty method based on the rough set theory was proposed in [32]. The ensembles of these

constraint-handling techniques were claimed to reduce the use of fitness evaluations and perform better than algorithms

with a single constraint-handling technique in [38]. In [48], the authors studied several existing constraint-handling strate-

gies and proposed several methodologies based on parent-centric and inverse parabolic probability distribution. The authors

in [19] found that existing constraint-handling methods are applied to assist but not to guide the search process. They thus

proposed the so-called constraint consensus methods to assist infeasible individuals to move towards the feasible region.

Interested readers are referred to [41,43] for reviews, and [10,40] for recent advances on constraint-handling.

Another important issue in developing effective EAs for the NLP is on the offspring generation scheme. It is expected that

the scheme should be able to explore feasible regions of the NLP in the early stages, and exploit for the global optimum later

on. The search abilities of a range of EAs on the NLP (including genetic algorithms [22,63], evolution strategies, evolutionary

programming [4], differential evolution [14], particle swarm optimisation [13,20], and many others) have been extensively

studied. To the best of our knowledge, the application of EDAs is very limited. In [16], two EDAs coupled with different

constraint-handling methods were compared but only on two test problems. The continuous Gaussian model was used in

[53] for constrained optimisation.

Besides these research efforts, some researchers have made attempts to develop memetic computing (MC) approaches, i.e.

the hybridisation of local optimization and EAs, for the NLP. The MC approach has been well acknowledged as a promising

paradigm for dealing with various types of optimization problems [8]. In this paper, we develop a multi-cycled sequential

MC framework, where an EDA and a classical constrained optimization algorithm is hybridised sequentially. Further, a simple

learning scheme is proposed to learn useful information from previous cycles to improve the search efficiency in latter

cycles.

In the rest of the paper, related work on MC is reviewed in Section 2. We then present the multi-cycled sequential MC

framework in Section 3. The developed algorithm is presented in Section 4. The experimental results are summarised in

Section 5. Section 6 concludes the paper and discusses future work.

2. Related work

The development of the MC approaches has been proceeding in two main directions. On one hand, different meta-

heuristics are combined to take advantages of their respective strengths. For example, in [29], a combination of fuzzy

logic and evolutionary programming is proposed to handle constraints. In [9], evolutionary programming is hybridized with

GENOCOP [42] for the NLP. In [64] and [59], GAs are combined with simulated annealing and PSO, respectively, for the NLP.

The integration of artificial bee colony and bees algorithm was presented in [61]. In [23], a novel variant of invasive weed

optimization was combined as a local refinement procedure within differential evolution [23]. The combination of variability

evolution [35] and CMA-ES [36] was proposed in [37] for the NLP.



J. Sun et al. / Information Sciences 340–341 (2016) 175–190 177
On the other hand, classical numerical optimization approaches for the NLP have been hybridized in EAs. One of the main

advantages of classical approaches is that they are usually very efficient in locating feasible local optimum, but the search

efficiency highly depends on the quality of the initial solution. Starting from a ‘bad’ solution, a classical approach could

either only find an infeasible solution, or need a high computational cost to reach a feasible local optimum. Thus, effective

strategies to address when and how to apply the classical approach should be the main considerations in designing a MC

approach.

In recent literature (see e.g. [8,45]), the authors considered the MC approaches as a broader subject of memetic al-

gorithms (MAs). They stated that a MA is composed by an evolutionary framework that integrates one or more local

search components within the generation cycle of the evolutionary framework; while a MC is simply a hybrid algo-

rithm without a specific structure. As summarised in [44,46], basic MAs can be considered as local minimizer(s) acting

on evolutionary population, in which local optimiser(s) is applied to every single individual. From the view of compu-

tational cost, it is highly likely that such an indiscriminate strategy will result in a high computational cost. An obvi-

ous reason is that some individuals with low fitness cannot survive from the selection operation in the evolution pro-

cedure, which means that the improvement efforts will be wasted. Obviously, more uses of local improvements imply

more efforts on exploitation. As a result, too much emphasises on exploitation could be placed on the existing EAs, at

least in some cases. In other words, the balance of exploration and exploitation may be shifted too much in favour of

exploitation.

Some efforts have been made to address this shortcoming. One way is to apply the local optimisers only on a proportion

of promising individuals at each generation [46]. However, one can criticise that it is not fair to the other individuals when

the selection operation is performed. This is because a local search on a low-quality solution does not necessarily lead to a

low-quality local optima, especially in the constraint optimization context [26].

Another way is to apply the local search only after the EA has converged. Under this strategy, to obtain a good algorithm

performance, the hope is that the best solution found by the EA is located in the attraction basin of a high-quality solution.

Unfortunately, this is not always the case. No scheme in this strategy is provided to escape from the found optimum if it is

not global.

In recent literature, a sequential memetic computing (SMC) approach has been implemented [25,56]. In such structure,

components in the evolutionary framework and the local optimiser(s) are all considered as operators. The evolution pro-

cedure can be considered as a connected structure of those operators. The structure simplifies the MA structure, and has

the potential to alleviate the aforementioned problems existed in the MAs. In [25], a single solution evolves till convergence

and a parametrised local search improves the solution at different stages with different parameter settings. In [7], a meta-

heuristic is first applied to find a promising solution and to compute a separability index; two heuristic local optimisers

are then selected according to the index to improve the promising solution. In our work [56], an EDA is hybridized with a

classical local optimiser under a SMC structure. These papers have shown that a simple SMC approach is highly potential to

improve the search efficiency.

3. The multi-cycled sequential memetic computing structure

We observe that existing SMC approaches do not take an EA as a single operator. Rather, the EA operators and local

optimiser(s) are connected sequentially within an evolutionary framework. Obviously, an EA takes some inputs (e.g. fit-

ness function, algorithmic parameters, etc.) and outputs some solutions, which is similar to what other operators (such as

crossover and mutation operators in GA) do. In this paper, we propose to use a complete EA as an operator; and connect it

with local optimiser(s) sequentially. Further, we propose to employ the combination of EA and local optimiser(s) multiple

times until the computational budget has been reached. If we consider the composition of EA and local optimiser as a cycle,

we end up with a multi-cycled SMC structure.

Under the multi-cycled SMC structure, firstly, we do not apply local optimisers to any individual during the EA search

procedure. This avoids wasting computational resources on unpromising individuals under the MA structure. Secondly, the

multiple-cycle structure can provide a mechanism to improve search efficiency. That is, we can gradually accumulate useful

knowledge from previous cycles, and apply them in later cycles to either escape from previously found local optima, or to

accelerate the exploitation. To the best of our knowledge, no MC-based algorithms have been proposed to take the multi-

cycled structure, which means no learning mechanisms have ever been studied. Moreover, no efforts have been carried out

to apply the multi-cycled SMC structure for the NLP.

The above multi-cycled SMC approach for optimisation problems can be summarised in Algorithm 1. In the algorith-

mic framework, �1 and �2 are the parameters of the EA and the local optimiser, respectively, and c is the cycle in-

dex. At each cycle, EvolutionaryAlgorithm(�1, history) takes the history information into account, and returns the best

solution found (denoted as xc) in line 3. In the first cycle, no history information is available, we thus set history = ∅
(line 1). LocalSearch(xc, �2) improves xc to a local optimum x∗

c (which is called the cycle best solution) in line 4. The

global best solution x∗ is updated after the local improvement (line 5). Useful information S is then learned from the

current cycle by LearningFromHistory() (line 6). The cycle index and the history information are updated hereafter (line

7). A new cycle starts if the computational budget has not been exceeded. The global best solution x∗ is returned on

termination.
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Algorithm 1 Multi-cycled sequential memetic computing framework.

Require: parameters �1 and �2

Ensure: The best solution found x∗

1: Initialization. Set c = 0, history = ∅;

2: while computational budget has not been exceeded, do

3: xc = EvolutionaryAlgorithm(�1, history);

4: x∗
c := LocalSearch(xc,�2);

5: x∗ := min{x∗
j
, 1 ≤ j ≤ c};

6: S := LearningFromHistory();

7: c := c + 1; history := history
⋃

S.

8: end while

Algorithm 2 Multivariate adaptive probability model.

Require: The selection population Ps(t) =
{

x1(t), . . . , xK (t)
}

Ensure: The probability p(x; t).

1: for 1 ≤ i ≤ n do

2: Find �min
i

(�max
i

) = min(max){xk
i
(t), 1 ≤ k ≤ K};

3: Assign a small probability to the intervals [�min
i

− εi, �
min
i

] and [�max
i

, �max
i

+ εi], and a big probability to [�min
i

, �max
i

].

4: end for
4. The working algorithm

In this section, we present a simple working algorithm according to the generic scheme proposed in the above section. An

estimation of distribution algorithm (EDA) is proposed as the EA operator. As well known, in an EDA, offspring are generated

by sampling from a probability model, which is constructed from selected promising individuals, at each generation. The

probability model is to represent the statistical information extracted from the selected promising solutions. The way to

construct the probability model differentiates the EDA instantiations. Readers are referred to [28] for detailed descriptions

of these EDAs.

4.1. Adaptive probability model and multiple sampling strategy

In existing EDAs, the probability model for real variables is usually assumed to be a Gaussian distribution [28], a Gaussian

mixture [5], or a histogram [62,67]. In this paper, we propose to construct a full-factorised adaptive multivariate model. That

is, we assume p(x; t) = ∏n
i=1 p(xi; t) where x = (x1, . . . , xn)ᵀ. The construction of p(x; t) is presented in Algorithm 2, where

a selected population containing a set of K individuals Ps(t) is the input. First, the range of the i-th variable in Ps(t) is

sought, denoted as [�min
i

, �max
i

] (line 1); then the range is expanded with a small positive number ε i; different probabilities

are assigned to the range interval [�min
i

, �max
i

] and the expanded intervals ([�min
i

− εi, �
min
i

] and [�max
i

, �max
i

+ εi]) (line 3).

The developed EDA exhibits several new features in model construction and sampling. First, a uniform distribution is

assumed over the range interval [�min
i

, �max
i

]. This is meant to preserve the diversity during the search. Second, the expansion

intervals [�min
i

− εi, �
min
i

] and [�max
i

, �max
i

+ εi] are meant to address the premature convergence problem. Finally, we propose

to use a multiple sampling strategy to make the sampling more effective, which is meant to address the sampling noise

problem.

To the best of our knowledge, in almost all EDAs, the number of sampled offspring from the probability model p(x; t) is

usually less than, or equal to, the population size. However, it is well known that to accurately characterise p(x; t), a large

sampling size is needed [50]. Therefore, statistically speaking, a small sample size will result in high sampling noise, which

might falsely guide the evolutionary search. That is, the search may be leaded to possibly non-promising areas. The problem

will become much serious when p(x; t) is complex. To address this problem, we propose to generate a number of offspring

which is k(>1) (we call it the sampling factor) times of the population size.

4.2. The learning from previous cycles

An important contribution of the proposed framework is that it enables the learning from previous cycles to improve the

search efficiency in latter cycles. This section presents a simple learning method.

The most important message we obtained from previous cycles is the location information of the global best x∗. This

information should be incorporated in the new cycle. One possible way to take advantage of the location information is to

combine it in the sampling procedure by using the guided mutation method [66]. Algorithm 3 describes the guided mutation

in detail, where �A� represents the rounding of A to the nearest integers greater than or equal to A. Basically speaking, the

guided mutation generates an offspring by copying a part of x∗, and filling the other part by sampling from a probability

model.
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Algorithm 3 Guided mutation operator.

Require: a template solution x∗, a real number 0 ≤ α ≤ 1 and a probability model p(x; t) = ∏
p(x j; t).

Ensure: An offspring x = (x1, . . . , xn)ᵀ.

1: Set U = {1, 2, . . . , n} and N := �αn�; Randomly select a set of indices V ⊂ U with |V | = N;

2: For an index i ∈ V , set xi := x∗
i
; For an index j ∈ U \ V , sample a value y from the probability model p(x j; t), set x j := y;

3: Return x;
The underlying rationale behind the guided mutation is closely related to the so-called proximity optimality principle

(POP) [15], which has been explicitly or implicitly applied in almost all meta-heuristics. The POP states that good solutions

have similar structure. By using the guided mutation operator, some elements of the global best solution is statistically re-

tained during the search. Under certain conditions, retaining these location information will improve the algorithmic search

efficiency. We will discuss the condition in Section 4.5.

4.3. Selection and replacement

The selection process has been widely studied in the constrained evolutionary optimisation literature, mostly based on

constrain-handling techniques. Selection methods based on penalty methods will bias the search, while those based on

multi-objective approaches will not. However, as stated in [52], the unbiased search does not necessarily improve the search

efficiency. Since local optimisers usually work better on a feasible solution than on an infeasible solution, we prefer to use

a selection method that favours feasible solutions. Here, the selection method, called the over-penalised approach in [52], is

adopted in this paper.

In the over-penalised approach, the feasible individuals are ranked higher than the infeasible individuals. The feasible

solutions are sorted according to their objective function values f. The infeasible individuals are ranked according to the

penalty function values ψ , which is defined as ψ(x) = f (x) + ∑
j g+

j
(x)β where g+

j
(x) = max{0, g j(x)}, and β = 2.

Regarding replacement, we again adopt the over-penalised selection approach to form new population. At each genera-

tion, the best individuals are used to construct the probability model and passed to the new population, while the rest of

the new population is replaced by the best offspring sampled from the constructed probability model.

4.4. The local optimiser

We adopt a classical optimisation method developed for the NLP, called DONLP2 (abbreviation for ‘DO NonLinear Pro-

gramming’) [54] to improve the best solution found by the EDA. DONLP2 is based on the sequential quadratic programming

method (SQP), in which fully regularised mixed constrained sub-problems are used to deal with non-regular constraints. It

incorporates techniques including a slightly modified Pantoja–Mayne update for the Hessian of the Lagrangian, a variable

dual scaling and an improved Armijo-type step size algorithm to improve the search efficiency of the SQP.

The most important algorithmic parameters of the DONLP2, i.e. �2 in Algorithm 1, include τ 0 which gives a bound

describing how much the unscaled penalty-term (the L1-norm of the constraint violation) may deviate from zero and δ0

which is a binding constraint. In our experimental simulations, we set τ0 = 1.0 and δ0 = 0.2 as suggested in [54]. Moreover,

we do not calculate the analytical form of the gradients and Hessian of the Lagrangian, but using numerical differentiation.

The used NFEs for computing the differentials are included in the calculation of the overall NFEs in the sequel reports.

4.5. Remarks on thealgorithmic framework and the working algorithm

In this section, we discuss the pros and cons of the algorithmic framework, and the condition that the working algorithm

will be effective.

4.5.1. The algorithmic framework

In the sequel, we assume that there are a limited number of feasible local optima1 x∗
i
, 1 ≤ i ≤ M in terms of the fit-

ness function λ(x) = f (x). They can be sorted in a descending order, denoted as x∗
1
, x∗

2
, . . . , x∗

M
where λ(x∗

1
) ≥ λ(x∗

2
) ≥ · · · ≥

λ(x∗
M

).

In the sequel, we define

φ(x∗
i ) =

{
x∗|∃ j ∈ {1, 2, . . . , n} \ {i}, s.t. |x∗

j − x∗
i j| < ε

}
(2)

where ε is very small positive number. That is, φ(x∗
i
) contains the optima that is close to the i-th optimal solution. Further,

we introduce the condition

φ(x∗
i )

⋂
φ(x∗

j ) �= ∅ for j > i (3)
1 Readers that are interested in the theoretical analysis on the collaboration between global search and local search please refer to [33,34], in which

the concept of local search zones are defined and studied. Here, we only consider local optima rather than the local search zones since local optimiser is

considered as a black-box in the SMC structure, and its application only result in local optima.
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Fig. 1. The demonstration of the solution path using the problem instance g02 as an example.
which indicates that the two optima x∗
i

and x∗
j

have common elements. This can be seen as the mathematical formalisation

of the POP. Note that the condition (3) also implies that φ(x∗
i
) �= ∅ for all i, 1 ≤ i ≤ M. This can be proved by using contra-

diction as follows. Suppose for some i, φ(x∗
i
) = ∅. Then for all j > i, φ(x∗

i
)
⋂

φ(x∗
j
) = ∅, which contradicts the condition.

Moreover, we can see that if such a condition holds, a solution path exists under the proposed multi-cycled SMC struc-

ture. That is, starting from a local optimum x∗
i1

, i1 ∈ {1, . . . , M}, a better local optimum x∗
i2

, i2 > i1 can be found at further

cycles since φ(x∗
i1
)
⋂

φ(x∗
i2
) �= ∅. Applying the evolutionary cycle K times, we will end up with a sequence of local optima

x∗
i1

, . . . , x∗
iK

, or a ‘solution path’, with

φ(x∗
i j
)
⋂

φ(x∗
ik
) �= ∅, i j < ik; and λ(xik

) ≤ λ(xi j
).

Hence, we call Eq. (3) as the “solution path” condition.

The above discussion suggests that the multi-cycled SMC structure will be effective on problem instances that satisfy the

solution path condition. It also suggests that if φ(x∗
i
)
⋂

φ(x∗
j
) = ∅, the effectiveness of the framework is thus doubtful on

those problem instances since the information learned from history has no help for future search.

4.5.2. The working algorithm

According to [65], an EDA with truncation selection converges if the truncation threshold (i.e. the percentage of indi-

viduals being selected to the next generation) is less than 1. The over-penalised selection approach can be considered as a

truncation selection with adaptive threshold. The threshold will be always smaller than 1 since not all individuals will be

passed to the new generation. Therefore, we can conclude that the proposed EDA converges to a solution xc(t) at the t-th

cycle. Under the proposed structure, xc(t) is improved by the DONLP2 to obtain x∗
c (t) at generation t. It has been proved in

[54] that the DONLP2 holds a local convergence property. Therefore, x∗
c (t) is a local optimum.

According to previous discussion, if for some problem instances, the solution path condition holds, we can see that the

guided mutation operator will be very efficient in finding a better optimum in the solution path since it can stochastically

retain some location information of the present local optimum.

Fig. 1 shows the solutions (four local optima and the global optimum) found by the developed algorithm on g02 in

five cycles. The objective function values of the local optima are shown in the legend. From Fig. 1, we can see that many

variables (including x1−2, x4−5, x7−8, x11−20) of the local optima take similar values to the global optimum. In latter cycles,

the rest variables (x3, 6, 9, 10) are gradually modified. This example shows that the “solution path” condition holds for g02.

5. Experimental results

In the developed algorithm, called the multi-cycled evolutionary (MCEA) algorithm, the parameters (i.e. �1) of the EDA

include the population size M, the selection size K, the sampling factor k, the guided mutation parameter α, and the ex-

pansion parameter ε. The expansion in each dimension of the search space is set to be εi = bi−ai
M , 1 ≤ i ≤ n where ai and bi

are the lower and upper bound, respectively. This setting is to eliminate the effect of the variable scales in different coordi-

nates. Regarding the criterion to decide when a new cycle starts, in our implementation, new cycle starts if the number of

generations is more than 30; and in consecutive 5 generations,2 there are no better solutions found.

In this section, firstly we analyse the effects of the proposed EDA components to the algorithmic performance and the

algorithm’s sensitivity to the parameters. We then compare the developed algorithm with some well-known algorithms

including the winners of the CEC 2006 and 2010 competitions. Readers are referred to [30] and [39] for detailed problem
definitions.

2 These values used here were chosen based on experiments we carried out for the test problems.
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Table 1

Experimental results obtained by the MCEA, the MCEH and MCEG on the test problems except g20 and g22.

Function MCEA MCEH MCEG

# succ_run NFE #cycle #succ_run NFE #cycle #succ_run NFE #cycle

g01 1.00 5774 4.16 1.00 8606 8.20 1.00 7232 7.12

g02 1.00 74,030 33.16 1.00 59,712 30.76 0.00 500,000 112.36

g03 1.00 1326 1.00 1.00 3346 2.36 1.00 3346 2.36

g04 1.00 412 1.00 1.00 433 1.00 0.92 40,470 86.08

g05 1.00 417 1.00 1.00 398 1.00 1.00 381 1.00

g06 1.00 467 1.00 0.96 20,385 58.12 1.00 196 1.00

g07 1.00 2207 1.00 1.00 1432 1.00 1.00 1368 1.00

g08 1.00 458 2.56 1.00 416 2.08 1.00 450 2.56

g09 1.00 1030 2.08 1.00 416 1.00 1.00 1480 1.00

g10 1.00 13,359 1.00 1.00 37,859 1.48 1.00 33,533 1.32

g11 1.00 174 1.00 1.00 155 1.00 1.00 174 1.00

g12 1.00 196 1.00 1.00 198 1.00 1.00 197 1.00

g13 1.00 1065 1.88 1.00 506 1.00 1.00 1501 3.00

g14 1.00 3642 2.68 1.00 7590 9.40 0.00 500,000 731.24

g15 1.00 292 1.00 1.00 303 1.08 1.00 277 1.00

g16 0.96 22,058 26.56 0.96 21,587 23.44 1.00 25,311 31.12

g17 0.80 257,115 73.24 0.76 266,865 63.04 0.92 353,855 35.76

g18 1.00 7657 7.04 1.00 4150 3.72 1.00 3893 2.92

g19 1.00 4078 1.00 1.00 2617 1.00 1.00 2846 1.00

g21 1.00 34,152 8.12 0.88 180,512 39.16 0.56 359,339 54.72

g23 1.00 4321 1.36 1.00 3403 1.00 1.00 2388 1.60

g24 1.00 181 1.00 1.00 164 1.00 1.00 239 1.40
5.1. Comparison metrics

The comparison metrics include the success rate (#succ_run), the average number of fitness evaluation consumed (NFE),

and the average number of cycles (#cycle). Suppose that in total T runs, there are K successful runs. For each run i, the

consumed NFEs is Ni (if not successful, Ni is the maximum NFEs allowed) and the number of cycles is Ci, then the success

rate is defined as #succ_run = K/T, the average NFEs is computed as NFE = ∑T
i=1 Ni/K, and the average number of cycles is

defined as #cycle = ∑T
i=1 Ci/T.

5.2. Component analysis

The two aspects that mostly affect the performance of the proposed algorithm are the exploration capability of the prob-

abilistic model, and the learning capability of the guided mutation operator. The component analysis aims to investigate

their respective contributions. Moreover, we intend to study the effect of the constraint-handling techniques to the algorith-

mic performance. The CEC 2006 test problems are used for the analysis. The experimental configurations are set as follows:

the positive number to relax the equality constraints is ε = 0.0001, the number of runs is 25 and the maximum number

of fitness evaluations (NFEs) is 500,000. At each run, the NFEs needed to find a solution satisfying f (x) − f (x∗) < ε are

recorded.

5.2.1. The probability model

The effect of the probability model can be carried out by adopting different probability models in the proposed EDA.

In this study, we compare the histogram model and the Gaussian model with the proposed adaptive model. The resul-

tant algorithms are called MCEH (with histogram model), and MCEG (with Gaussian model), respectively. Those probability

models are all fully-factorised multivariate models. In the histogram model, the bound of each variable is divided into 10

subintervals (as suggested in [67]), and the histogram of the selected individuals is normalised to be the probability distri-

bution over these subintervals. The Gaussian model assumes that the selected individuals at each variable follows a Gaussian

distribution.

The parameter settings of these algorithms are M = 2n, k = 1, and α = 0.3. Table 1 summarises the comparison metrics

obtained by the compared algorithms for the test problems except g20 and g22 (since they do not have feasible solutions).

In Table 1, entries in bold typeset indicate the least NFEs consumed by the algorithms. From Table 1, we see that in 8

out of 20 test problems, the MCEA consumed fewer NFEs than the MCEH; while in 10 out of 22 test problems, the MCEH

requires fewer NFEs than that of the MCEA. In 4 out of 22 test problems, the MCEG performs better than the other two.

Though it seems that the histogram model performs better in general, it can be seen from Table 1 that the success rates

obtained by the proposed model on functions g06, 17, 21 are higher than those obtained by the histogram model. Moreover,

if we focus on those functions (including g02,07−09,11,13,16,19,23,24) that the histogram model has a better performance, it can
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Fig. 2. Comparison of different probability model and selection methods in terms of NFEs on g02.

Table 2

The experimental results obtained by the MCEA and the MCES.

Function MCEA MCES

#_run NFE #cycle #_run NFE #cycle

g01 1.00 5774 4.16 1.00 15,712 10.00

g02 1.00 74,030 33.16 0.64 336,461 114.24

g03 1.00 1326 1.00 0.92 118,536 77.84

g04 1.00 412 1.00 1.00 458 1.00

g05 1.00 417 1.00 1.00 398 1.00

g06 1.00 467 1.00 0.92 40,264 108.68

g07 1.00 2207 1.00 1.00 1576 1.00

g08 1.00 458 2.56 1.00 584 2.80

g09 1.00 1030 1.00 1.00 1888 1.00

g10 1.00 13,359 1.00 1.00 20,939 1.20

g11 1.00 174 1.00 1.00 213 1.00

g12 1.00 196 1.00 1.00 196 1.00

g13 1.00 1065 1.88 1.00 627 1.04

g14 1.00 3642 2.68 1.00 51,218 38.36

g15 1.00 292 1.00 1.00 349 1.00

g16 0.96 22,058 26.56 0.96 24,184 23.32

g17 0.80 257,115 73.24 0.76 289,937 85.64

g18 1.00 7657 7.04 1.00 2145 1.72

g19 1.00 4078 1.00 1.00 3595 1.00

g21 1.00 34,152 8.12 1.00 110,405 29.96

g23 1.00 4321 1.36 1.00 3522 1.00

g24 1.00 181 1.00 1.00 422 2.44
be seen that except functions g02, g08 and g16, the average numbers of cycles used by the MCEH and the MCEA to reach the

global optima are all one, which means that it is fairly easy for the histogram and the adaptive model to obtain high-quality

initial solutions.

Since the main difference between the compared algorithms is on the probabilistic model used in the EDA, we may

conclude that the proposed adaptive model can result in better exploration capability than the others. Fig. 2 shows the

boxplots of the NFEs consumed by the MCEA, MCEH and MCEG, respectively, on g02.

5.2.2. The contribution of the constraint-handling

We now study the effects of the over-penalised selection and the stochastic ranking selection to the algorithm perfor-

mance. To carry out the comparison, we build an algorithm, called MCES, in which the stochastic ranking selection is used.

In the experiments, the same algorithmic parameters as above are used by the MCEA. For the MCES, the stochastic

ranking parameter is set to 0.45 as suggested in [51]. Table 2 lists the comparison metrics obtained by the two algorithms

for the test problems except g20 and g22. Entries in bold typeset are the least NFEs obtained by the compared algorithms.

From Table 2, we can see that in 16 out of 22 test problems, the over-penalised selection approach performs better than

the stochastic ranking selection in terms of the NFEs consumed. In terms of the success rate, it can be seen that the over-

penalised approach can obtain higher rates than the stochastic ranking approach in all the test problems, except for g16

where the success rates are both one. We thus may conclude that the over-penalised constraint-handling technique is more

effective than that of the stochastic ranking under the proposed framework.
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Table 3

The experimental results obtained by the MCEA with different sampling factor k. Entries in bold typeset are the least NFEs

obtained by the algorithm.

Function k = 0.5 k = 1 k = 1.5 k = 2 k = 2.5 k = 3

#succ_rate NFE #succ_rate NFE #succ_rate NFE NFE NFE NFE

g01 1.00 8005 1.00 5774 1.00 6549 6728 5877 7136

g02 1.00 73,131 1.00 74,030 1.00 68,968 38,931 55,270 69,043

g03 1.00 4829 1.00 1326 1.00 3200 1895 3969 3052

g04 1.00 294 1.00 412 1.00 591 691 950 1034

g05 1.00 207 1.00 417 1.00 514 722 861 1463

g06 0.88 60,175 1.00 467 1.00 526 366 345 536

g07 1.00 1193 1.00 2207 1.00 2292 2373 3198 3573

g08 1.00 405 1.00 458 1.00 1407 444 656 1116

g09 1.00 756 1.00 1030 1.00 1092 1198 1458 1700

g10 1.00 13,619 1.00 13,359 1.00 4331 5570 32,087 12,716

g11 1.00 92 1.00 174 1.00 246 302 394 471

g12 1.00 109 1.00 196 1.00 325 396 487 573

g13 1.00 449 1.00 1065 1.00 658 1406 3739 3406

g14 1.00 4227 1.00 3642 1.00 3542 3155 11,242 6818

g15 1.00 221 1.00 292 1.00 336 474 669 966

g16 0.92 41,822 0.96 22,058 0.96 21,738 1550 3000 44,211

g17 0.80 257,115 0.92 181,885 0.92 145,887 89,042 93,971 110,189

g18 1.00 3416 1.00 7657 1.00 4264 4338 2189 6158

g19 1.00 3012 1.00 4078 1.00 5078 5733 6949 7843

g21 1.00 44,588 1.00 34,152 1.00 48,749 48,944 17,307 52,991

g23 1.00 2274 1.00 4321 1.00 3444 3315 4322 5964

g24 1.00 97 1.00 181 1.00 404 297 689 500
Moreover, in comparison with the results obtained by the MCEH shown in Table 1, one can see that the MCES performs

even worse than that of the MECH on most of the test problems. This shows that the exploration capability of the developed

EDA does not benefit from the application of the stochastic ranking. Particularly, we can also observe this from the last

column in Fig. 2. It shows that the NFEs consumed by the MCES are even more than that of the MCEH.

5.3. Sensitivities to the algorithmic parameters

The main parameters of the working algorithm include the population size N, the sampling factor k and the guided

mutation parameter α. In this section, we investigate the effects of these parameters on the performance of the algorithm.

5.3.1. The sampling factor

To test the effects of the sampling factor to the algorithmic performance, we run the algorithm by setting different k ∈
{0.5, 1, 1.5, 2, 2.5, 3}. The rest parameters are set as M = 2n, and α = 0.3. Table 3 shows the results obtained. In the table,

entries in bold typeset are the least NFEs consumed by the algorithm.

In Table 3, we omit the success rates for k ≥ 2 since they are all one. On one hand, from Table 3, we can see that the

MCEA with k = 0.5 performs the best on most (12 out of 22) of the test problems in terms of the consumed NFEs. However,

as we discussed early in Section 5.2.1, those problems are fairly easy. The good performance of the MCEA with k = 0.5

might be due to the efficiency of the learning mechanism. On the other hand, if we focus on the functions g06, 16, 17 which

are considered as hard, we can see that the best performance is achieved by the MCEA with k = 2. This indicates that a

large sampling size can indeed improve the search efficiency.

Regarding the MCEA with large sampling size (i.e. k ≥ 2), it can be seen that in 19 out of 22 test problems, the MCEA

with k = 2 requires the least NFEs than the MCEA with k = 2.5 and 3. This shows that a large sampling factor does not

always lead to a competitive performance in terms of computational cost. The sampling factor should be carefully chosen to

balance the search efficiency and the computational cost.

We further investigate the interaction between the population size M and the sample factor k, using g02 as an example.

g02 is of high-dimensional (n = 20), non-linear in both the objective function and the constraints, and multi-modal. Fig. 3

summarises the obtained results. Fig. 3(a) shows the mean NFEs with varied M ∈ {20, 40, 60, 80, 100} and k ∈ {0.5, 1, 1.5, 2},

while (b) shows the mean number of cycles. From Fig. 3(a), one can see that generally a small sampling size does not

always result in a reduced NFEs. Specifically, we can see that in case k = 1, the consumed NFEs is fewer than that in case

k = 0.5 when the population size is less than 80. This observation justifies that more samples can reduce the sampling

noise in case a small population size is employed, as claimed in Section 4.1. From Fig. 3(b), it can be seen that the number

of cycles tends to decrease along with the increase of the population size and the increase of the sampling factor.
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Fig. 3. The study of the interactions of the algorithmic parameters M and k to the performance of the MCEA. (a) shows the results in terms of the NFEs;

(b) is the results in terms of the number of cycles.

Table 4

The experimental results obtained by the MCEA with different population size M. Entries in bold typeset are the least NFEs obtained.

Function M = n M = 2n M = 3n M = 4n M = 5n M = 6n

NFE #cycle NFE #cycle NFE #cycle NFE #cycle NFE #cycle NFE #cycle

g01 5774 4.16 3745 2.64 7513 3.76 4715 1.16 5205 1.00 8368 1.40

g02 74,030 33.16 57,433 18.24 72,456 32.08 91,890 22.68 110,236 21.84 80,186 13.20

g03 1326 1.00 2567 1.00 4106 2.36 2871 1.00 3778 1.64 2709 1.00

g04 412 1.00 1104 1.00 691 1.12 791 2.10 1106 1.08 1061 1.60

g05 417 1.00 353 1.00 604 1.00 766 1.00 718 1.00 1036 1.00

g06 467 1.00 426 1.00 449 1.00 642 1.00 515 1.00 475 1.00

g07 2,207 1.00 2162 1.00 2343 1.00 3101 1.00 3182 1.00 5161 1.00

g08 458 2.56 176 1.00 658 2.76 295 1.00 800 2.00 663 1.48

g09 1030 1.00 841 1.00 915 1.00 1281 1.00 1503 1.00 1631 1.00

g10 13,359 1.00 12,452 1.00 21,186 1.12 12,446 1.00 17,958 1.08 21,138 1.04

g11 174 1.00 153 1.00 244 1.00 291 1.00 370 1.00 453 1.00

g12 196 1.00 209 1.00 315 1.00 415 1.00 510 1.00 580 1.00

g13 1065 1.88 1566 1.00 915 1.00 1875 2.04 3786 3.72 8269 6.52

g14 3642 2.68 3770 2.72 3578 2.72 3402 2.48 3114 2.28 4146 3.04

g15 292 1.00 328 1.04 393 1.00 527 1.00 705 1.00 673 1.00

g16 22,058 26.56 1326 1.00 2943 1.00 3000 1.00 3282 1.00 3905 1.00

g17 257,115 73.24 160,063 42.56 188,138 69.80 187,185 46.56 175,857 41.20 199,214 39.64

g18 7,657 7.04 1525 1.00 3206 1.88 4311 1.60 8747 3.60 8447 2.84

g19 4,078 1.00 3878 1.00 5276 1.00 6,62 1.00 8116 1.00 10,178 1.00

g21 34,152 8.12 23,749 11.44 34,526 13.68 65,104 18.12 88,466 21.60 54,616 15.24

g23 4321 1.36 3402 1.08 3441 1.00 4032 1.20 4763 1.16 4975 1.00

g24 181 1.00 165 1.00 318 1.36 452 1.60 362 1.00 462 1.08
In summary, we may conclude that the multiple sampling strategy can indeed improve the search efficiency. But a sam-

pling factor should be carefully chosen to balance the search efficiency and the computational cost. Moreover, the multiple

sampling strategy is able to reduce the sampling noise in case a small population size is employed.

5.3.2. The guided mutation and the population size

In this section, we study the effect of the guided mutation by looking at the performance of the MCEA with different

α and population size M. The population size M seriously affects the exploration capability of the proposed EDA, and α
controls the contribution of the learned information to further search.

We first test the performance of the MCEA by setting the population size M to be j × n where j ∈ {1, 2, ���, 6}.

Table 4 lists the results obtained by the algorithm where entries with bold typeset are the least NFEs consumed. The

other parameters are set as k = 1, and α = 0.3. From Table 4, we can see that the MCEA with M = 2n achieved the best

performance in terms of the NFEs on almost all test problems, except for g12−15 where it is not as successful as the

MCEA with M = n. In general, we may conclude that a population size M = 2n is a good choice for an optimal algorithmic

performance.

We further investigate how α and M interact to effect the algorithmic performance. An increased population size will

increase the NFEs used in a cycle, but it also means an improved search ability. On the other hand, a large α value will
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Fig. 4. The study of the interactions of the algorithmic parameters M and α to the performance of the MCEA. (a) shows the results in terms of the NFEs

and (b) is the results in terms of the number of cycles.
result in an accelerated search speed, but also a quick loss of diversity, which will deteriorate the exploration ability and

the possibility of escaping from local optima. Therefore, the optimal settings of M and α will be the settings that balance

the search speed and diversity.

In our experiment, the study was carried out by varying α ∈ {0.1, . . . , 0.9} and M ∈ {20, 40, 60, 80, 100}. Again, g02 is

used as an example. Fig. 4 summarises the obtained results. Since for all the α settings, the MCEA can successfully locate

the global optimum in all runs, we thus do not include the success rate results. Fig. 4(a) shows the average NFEs consumed

by the MCEA with different α and M values. From this figure, we can see that the consumed NFEs tend to decrease along

with the decrease of the population size for any given α. This indicates for g02, the loss of diversity due to small population

size can be compensated by the learning scheme. Fig. 4(b) shows that the consumed NFEs and the number of cycles increase

along with the increase of α. This indicates that a large α will limit the exploration ability of the MCEA due to the quick

loss of diversity.

5.4. Summary on component study

In summary, we may conclude that (i) the adaptive model can improve the exploration ability of the proposed EDA; (ii)

the learning strategy can compensate for the loss of diversity caused by employing a small population size; and (iii) the

multiple sampling strategy can improve the search efficiency but need to seek balance with the population size for the best
Table 5

The NFEs consumed by the MCEA, ε−DE, and the other algorithms on the

CEC’06 test problems.

Function MCEA ε−DE Best (Alg.)

Min Mean Max

g01 3284 6728 17,917 59,309 25,115 (SaDE)

g02 14,654 38,930 89,309 149,827 96,222 (MDE)

g03 1773 1895 1917 89,407 24,861 (MPDE)

g04 512 691 891 26,216 15,281 (GDE)

g05 592 724 933 97,430 21,306 (MDE)

g06 270 366 444 7381 5202 (MDE)

g07 2035 2373 3159 74,304 26,578 (DMS)

g08 331 444 896 1139 918 (MDE)

g09 1133 1198 1235 23,121 16,152 (MDE)

g10 5071 5570 5805 105,234 25,520 (DMS)

g11 292 362 585 16,420 3000 (MDE)

g12 382 396 442 4124 1308 (MDE)

g13 788 1406 2998 31,096 21,723 (MDE)

g14 2601 3155 3987 113,439 25,220 (DMS)

g15 447 474 533 83,655 10,458 (MDE)

g16 1635 1550 2270 19,122 8730 (MDE)

g17 19,345 85,478 155,419 98,860 26,364 (MDE)

g18 1948 4338 7924 59,153 28,261 (DMS)

g19 4561 5732 6958 356,350 21,830 (DMS)

g21 14,513 48,944 92,988 135,142 38,217 (PCX)

g23 2212 3135 3751 200,763 129,550 (SaDE)

g24 278 297 380 2952 1794 (jDE-2)
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algorithmic performance. Regarding the parameters of the MCEA, it seems reasonable to choose α ∈ [0.1, 0.4], k = 1, and

M = 2n according to our empirical studies.

5.5. Comparison with EAs on the CEC’06 benchmarks

In this section, we present the comparison of the MCEA with the algorithms in the CEC’06 competition. Since most of the

compared algorithms were successful in all runs, we use the consumed NFEs as the criterion. The experimental results are

summarised in Table 5. The minimal, mean and maximum number NFEs in 25 runs for the MCEA are shown in the ‘min’,

‘mean’ and ‘max’ columns, respectively. The column ‘ε−DE’ shows the average NFEs used by ε−DE which is reproduced

from [59]. The ‘Best(Alg.)’ column shows the least NFEs used by the algorithms appeared in the CEC’06 competition. These

algorithms are SaDE [24], MDE [41], MPDE [60], GDE [27], PCX [12], DMS [31] and jDE-2 [6].

From Table 5, it can be seen that the MCEA consumed much fewer NFEs than all the other compared algorithm except

for g17 where the average NFEs used by the MCEA is more than that of the MDE. However, we may still conclude that on

average, the MCEA outperforms these compared EAs in terms of the consumed NFEs on these test problems.

5.6. Comparison on the CEC’10 benchmark

In this section, we compared the MCEA with the winner of the CEC’10 competition, called ε-Constrained Differential

Evolution (ε-DEg), on the CEC’10 test problems. The experimental configurations are the same as those used in CEC’06,

except that the maximum NFEs are 200,000 for 10D, and 600,000 for 30D.

Table 6 summarises the statistics (including min, max and median) obtained by the two algorithms. The Wilcoxon rank

sum is applied to carry out the hypothesis test at 5% significance level. In the table, we use notations “+”, “−” and “ ∼ ” to

denote that the MCEA performs better, worse or similar to the ε-DEg in terms of solution quality.
Table 6

The comparison between the developed algorithm and ε-DEg on the CEC’10 test problems.

Prob. ε-DEg MCEA Hypo.

Min Median Max Min Median Max Test

D = 10

C01 −0.747310 −0.747310 −0.738039 −0.747310 −0.747310 −0.747310 +

C02 −2.277710 −2.263489 −2.209323 −2.248475 −2.210387 −2.174758 −
C03 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C04 −0.000010 −0.000010 0.003319 −0.000010 −0.000010 −0.000010 +

C05 −483.610625 −483.610625 −483.610625 −483.610625 −483.610625 −483.610625 ∼
C06 −578.658607 −578.652619 −578.645017 −588.442757 −588.382059 −584.697207 +

C07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C08 0.000000 10.572854 10.941538 0.000000 0.000000 0.000000 +

C09 0.000000 0.000000 142.078336 0.000000 7.931077 29.736517 +

C10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C11 −0.001523 −0.001523 −0.001523 −0.001523 −0.001523 −0.001523 ∼
C12 −570.089884 −426.511353 −0.199246 −158.383888 −59.906748 −39.453016 −
C13 −68.429365 −68.429365 −49.678547 −68.429365 −65.578466 −63.500458 +

C14 0.000000 0.000000 10.844283 0.000000 0.000705 0.0658532 −
C15 0.000000 0.000000 4.497445 0.079061 3.971311 4.180293 −
C16 0.000000 0.083187 0.847118 0.000000 0.000001 0.000002 +

C17 0.000000 0.015067 0.603958 0.000000 0.000000 0.000001 +

C18 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 ∼
D = 30

C01 −0.821724 −0.820803 −0.819459 −0.821884 −0.821884 −0.818056 +

C02 −2.180058 −2.151956 −2.131994 −2.247491 −2.223187 −2.199613 +

C03 28.673466 28.673467 28.673767 0.000000 0.000000 0.000000 +

C04 0.003207 0.007317 0.029206 −0.000003 −0.000003 −0.000003 +

C05 −453.965250 −446.129938 −443.650912 −483.610624 −483.610620 −483.610542 +

C06 −528.706201 −527.747125 −527.149398 −590.183769 −572.525932 −492.219758 +

C07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C08 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ∼
C09 0.000000 0.000000 85.465484 94.993156 261.731772 516.596882 −
C10 32.354417 33.129880 35.365672 0.000000 0.000000 0.000000 +

C11 −0.000337 −0.000288 −0.000238 −0.000392 −0.000392 −0.000392 +

C13 −66.724791 −65.453406 −64.275217 −68.429365 −68.429236 −65.577742 +

C14 0.000000 0.000000 0.000000 3.169514 22.578798 28.623660 −
C15 21.603509 21.603763 21.603913 0.010589 2.612249 21.603421 +

C16 0.000000 0.000000 0.000000 0.000000 0.000000 0.000003 ∼
C17 0.261621 3.331664 18.665782 0.000000 0.000000 0.000000 +

C18 0.805405 39.033089 825.543126 0.000000 0.000000 0.000071 +
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Fig. 5. The convergence plots of the MCEA on C10, C14, C15 and C17. Plots (a)–(d) show the curves of the 10-D test problems; plots (e)–(h) shows the

curves of the 30-D test problems.
From Table 6, it can be seen that for the 10D problems, the MCEA performs better than the ε-DEg on 8 problems;

while the ε-DEg performs better on 4 test problems. For the rest problems, they perform similarly. For the 30D problems,

the MCEA performs better than the ε-DEg on 12 test problems, and worse on 2 test problems. We may conclude that the

MCEA performs better than the ε-DEg on average. Fig. 5 shows the convergence plots of the MCEA on C10, C14, C15 and C17,

respectively.

Furthermore, we observed that the best solutions found by the MCEA are worse than those found by the ε-DEg on

C09, 14, 15 at 10D, and C09, 14 at 30D. However, the worst solutions found by the MCEA are better than the ε-DEg on C09, 14, 15

at 10D. This indicates that the performance of the MCEA is more stable than that of the ε-DEg. However, the MCEA performs

worse than the ε-DEg on C09 and C14 at 30D, but better on C15.

So far, the same parameters used for the CEC’06 test problems were applied on the CEC’10 benchmarks. We suspect that

the degeneration performance of the MCEA on C09, 14, 15 is because that these parameters are not well configured. To justify,
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Table 7

Further results on test problems C09, 14, 15 at 10D and 30D. The first three columns list the results obtained by the common

parameters, while the last three columns list the resuts with the optimized parameters.

Prob. MCEA MCEA with optimized parameters Hypo.

Min Median Max Min Median Max Test

D = 10

C09 0.000000 7.931077 29.736517 0.000000 0.000000 4.408181 +

C14 0.000000 0.000705 0.065853 0.000000 0.000000 0.000036 +

C15 0.079061 3.971311 4.180293 0.000000 0.001066 0.073362 +

D = 30

C09 94.993156 261.731772 516.596882 0.000000 66.931544 85.609162 +

C14 3.169514 22.578798 28.623660 0.000000 0.000037 0.005925 +
we run the MCEA on C09, 14, 15 at 10D and 30D with different M and α values in search of the optimal settings. We found

that the optimal settings for C09 at 30D are M = n and α = 0.2; for C14 at 10D and 30D are M = n and α = 0.4, for C15 at

10D are M = n and α = 0.1. The experimental results are summarised in Table 7. From Table 7, we see that with appropriate

parameters, the MCEA’s performances were significantly improved as suggested by the hypothesis test. Unfortunately, we

cannot find a common parameter setting that is able to achieve quality performance for all benchmark problems.

6. Conclusion and future work

In this paper, we presented a constrained evolutionary algorithm by combining an estimation of distribution algorithm

(EDA) and a classical local optimiser under a multi-cycled sequential memetic computing (SMC) structure. Such structure

regards a complete EA as an operator, and connects it with a local optimiser sequentially. It clearly decouples the EA and the

local optimiser. It also enables the learning from previous cycles to improve the search efficiency of the latter evolutionary

searches. In the experiments, we studied the components of the developed EDA to investigate its exploration capability, and

investigated the advantages of the proposed learning strategy. The developed algorithm was extensively compared against

the winning algorithms in the CEC 2006 and 2010 competition. The comparison results suggest that the proposed algorithm

outperforms the compared algorithms on these benchmarks.

From the experimental study, it can be seen that the most significant components that influence the algorithmic perfor-

mance under the proposed framework are the exploration capability of the EA and the learning capability. The EA should

not consider much about the exploitation, but it should be designed to realise quick and broad exploration. The learning

mechanism should be able to learn from history to facilitate effective search.

In the developed working algorithm, a full-factorized probability distribution model was developed, where the variable

interconnections are not considered. Since the variable interactions have a significant effect on the difficulties of the opti-

misation problem, it can be expected that a more sophisticated probabilistic model should result in a better performance.

The guided mutation operator is used as the learning mechanism. Our analysis showed that the learning approach can

be effective when the “solution path” condition holds, which may not be effective for those that do not hold. In the future,

an online learning algorithm which can learn the salience of the variables will be conducted. This could make the learning

more intelligent, and the learned knowledge could be more effective in guiding the evolutionary search to promising areas.
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